Microbe-Human Interactions: Infection, Disease and Resistance

Looking Ahead

On completing this chapter, you should be able to:

- Appreciate some concepts relating to infectious disease, including the difference between infection and disease, the stages in the progress of disease, and the methods for transmitting disease;
- Understand the relationships between microbes and their human hosts and list some important factors that contribute to the establishment of infectious disease;
- Summarize some key aspects of nonspecific resistance, including chemical barriers to infection, phagocytosis, and fever;
- Explain how antigens initiate the immune process;
- On completing this chapter, you should be able to:
 - Identify the parts of the immune system and recognize how the process of cell-mediated immunity works;
 - Describe the mechanism by which antibody-mediated immunity yields specific resistance, focusing on the activities of antibodies and the forms of immunity they engender;
 - Understand processes such as allergy and anaphylaxis through which the immune system can have deleterious effects on the human body.

Infection - a condition in which pathogenic microbes penetrate host defenses, enter tissues & multiply

Disease – any deviation from health, disruption of a tissue or organ caused by microbes or their products

Resident flora
- Includes bacteria, fungi, protozoa, viruses and arthropods
- Most areas of the body in contact with the outside environment harbor resident microbes; large intestine has the highest numbers of bacteria
- Internal organs & tissues & fluids are microbe-free
- Bacterial flora benefit host by preventing overgrowth of harmful microbes
- Landscape of the skin
- Distribution of flora
- Colonized regions of the respiratory tract

True pathogens – capable of causing disease in healthy persons with normal immune defenses
- Influenza virus, plague bacillus, malarial protozoan

Opportunistic pathogens – cause disease when the host’s defenses are compromised or when they grow in part of the body that is not natural to them
- Pseudomonas sp & Candida albicans

Overview of infection

Portals of entry
- Skin
- Gastrointestinal tract
- Respiratory tract
- Urogenital tract

Portals of exit
- Respiratory, saliva
- Skin scales
- Fecal exit
- Urogenital tract
- Removal of blood

Infectious dose (ID)
- Minimum number of microbes required for infection to proceed
- Microbes with small IDs have greater virulence
 - 1 rickettsial cell in Q fever
 - 10 bacteria in TB, giardiasis
 - 10^9 bacteria in cholera

Lack of ID will not result in infection
- Factors affecting I.D. Mechanisms of adhesion/invasion
 - Fimbrae: Allow attachment
 - Flagella: Allow the organism to move
 - adhesive slimes or capsules
 - cilia
 - suckers
 - hooks
 - barbs
 - Mechanisms of adhesion
- Factors affecting I.D. Virulence factors
 - what does the organism use to invade the body
 - exoenzymes – digest epithelial tissues & permit invasion of pathogens
 - Toxigenicity – capacity to produce toxins at the site of multiplication
 - endotoxins – lipid A of LPS of gram-negative bacteria
 - exotoxins – proteins secreted by gram-positive and gram-negative bacteria
 - antiphagocytic factors – help them to kill or avoid phagocytes, include leukocidins and capsules
- Patterns of infection
 - localized infection – microbes enter body & remains confined to a specific tissue
 - systemic infection – infection spreads to several sites and tissue fluids usually in the bloodstream
 - focal infection – when infectious agent breaks loose from a local infection and is carried to other tissues
 - Patterns of infection
 - Mixed infection – several microbes grow simultaneously at the infection site
 - Primary infection – initial infection
 - Secondary infection – another infection by a different microbe
- Diagnosis
 - Sign – objective evidence of disease as noted by an observer
 - Symptom – subjective evidence of disease as sensed by the patient
 - Sequelae – long-term or permanent damage to tissues or organs
- Epidemiology
 - The study of the frequency and distribution of disease & health-related factors in human populations
 - Surveillance – collecting, analyzing, & reporting data on rates of occurrence, mortality, morbidity and transmission of infections
 - Reportable, notifiable diseases must be reported to authorities
 - Centers for Disease Control and Prevention
 - (CDC) in Atlanta, GA – principal government agency responsible for keeping track of infectious diseases nationwide
 - Prevalence – total number of existing cases with respect to the entire population usually represented by a percentage of the population
 - Incidence – measures the number of new cases over a certain time period, as compared with the general healthy population
 - Mortality rate – the total number of deaths in a population due to a certain disease
 - Morbidity rate – number of people afflicted with a certain disease
- Endemic – disease that exhibits a relatively steady frequency over a long period of time in a particular geographic locale
- Sporadic – when occasional cases are reported at irregular intervals
- Epidemic – when prevalence of a disease is increasing beyond what is expected
- Pandemic – epidemic across continents
- Patterns of disease occurrence
- Reservoirs of infection
 - Primary habitat in the natural world from which a pathogen originates
 - Living reservoirs may or may not have symptoms
 - Asymptomatic carriers
 - Passive carriers
 - **Vectors** – live animal that transmits infectious disease
 - Nonliving reservoirs – soil, water
- Types of carriers
- Vectors
- Patterns of transmission
 - Direct contact
 - Kissing, sharing body fluids,
 - Indirect contact
 - Vehicle – inanimate material, food, water, biological products, **fomites**
 - Airborne – droplet nuclei, aerosols
- Nosocomial infections
 - Diseases that are acquired during a hospital stay
 - Most commonly involve urinary tract, respiratory tract, & surgical incisions
 - Most common organisms involved gram-negative intestinal flora, *E. coli*, *Pseudomonas*, *Staphylococcus*
- Nosocomial infections
- Immunity
 - Resistance is the ability to ward off disease
 - lack of resistance is termed susceptibility
- Nonspecific resistance to disease
 - general defensive mechanisms effective on a wide range of pathogens (disease producing microbes)
- Specific resistance or immunity is ability to fight a specific pathogen
 - cell-mediated immunity
 - antibody-mediated immunity
- Nonspecific Resistance to Disease
 - Immediate protection against wide variety of pathogens & foreign substances
 - lacks specific responses to specific invaders
 - Mechanisms function regardless of type of invader
 - external mechanical & chemical barriers
 - internal nonspecific defenses
 - antimicrobial proteins
 - natural killer cells & phagocytes
 - inflammation & fever
 - Skin & Mucous Membranes
 - **Mechanical protection**
 - skin (epidermis) closely packed, keratinized cells
 - shedding helps remove microbes
 - mucous membrane secretes viscous mucous
 - cilia & mucus trap & move microbes toward throat
 - washing action of tears, urine and saliva
 - **Chemical protection**
 - sebum inhibits growth bacteria & fungus
 - perspiration lysozymes breakdown bacterial cells
 - acidic pH of gastric juice and vaginal secretions destroys bacteria
 - **Internal Defenses**
 - Antimicrobial proteins discourage microbial growth
 - interferons
 - produced by virally infected lymphocytes & macrophages
- diffuse to neighboring cells to induce synthesis of antiviral proteins
 - complement proteins
 - inactive proteins in blood plasma
 - when activated enhance immune, allergic & inflammatory reactions
 - transferrins
 - iron-binding proteins inhibit bacterial growth by reducing available iron
- Stages of Inflammation
 - Vasodilation & increased permeability of vessels
 - caused by histamine from mast cells, kinins from precursors in the blood, prostaglandins from damaged cells, and leukotrienes from basophils & mast cells
 - occurs within minutes producing heat, redness & edema
 - pain can result from injury, pressure from edema or irritation by toxic chemicals from organisms
 - blood-clotting factors leak into tissues trapping microbes
 - Phagocyte emigration
 - within an hour, neutrophils and then monocytes arrive and leave blood stream (emigration)
- Tissue repair
- Fever
 - Abnormally high body temperature that occurs because the hypothalamic thermostat is reset
 - Occurs during infection & inflammation
 - bacterial toxins trigger release of fever-causing cytokines such as interleukin-1
 - Benefits
 - intensifies effects of interferons, inhibits bacterial growth, speeds up tissue repair
- Lymphatic Organs & Tissues
 - Widely distributed throughout the body
 - Primary lymphatic organs
 - provide environment for stem cells to divide & mature into B and T lymphocytes
 - red bone marrow gives rise to mature B cells
 - thymus is site where pre-T cells from red marrow mature
 - Secondary lymphatic organs & tissues
 - site where most immune responses occur
 - lymph nodes, spleen & lymphatic nodules
- Natural Killer Cells & Phagocytes
 - NK cells kill a variety of microbes & tumor cells
 - found in blood, spleen, lymph nodes & red marrow
 - attack cells displaying abnormal MHC antigens
 - Phagocytes (neutrophils & macrophages)
 - ingest microbes or particulate matter
 - macrophages developed from monocytes
 - fixed macrophages stand guard in specific tissues
 - histiocytes in the skin, kupffer cells in the liver, alveolar macrophages in the lungs, microglia in the brain & macrophages in spleen, red marrow & lymph nodes
 - wandering macrophages in most tissue
- Phagocytosis
- Chemotaxis
 - attraction to chemicals from damaged tissues, complement proteins, or microbial products
 - Adherence
 - attachment to plasma membrane of phagocyte
 - Ingestion
 - engulf by pseudopods to form phagosome
- Digestion & killing
- merge with lysosome containing digestive enzymes & form lethal oxidants
- exocytosis residual body

- Specific Resistance: Immunity
 - Immunity is body's ability to defend itself against specific foreign material or organisms
 - bacteria, toxins, viruses, cat dander, etc.
 - Diffs from nonspecific defense mechanisms
 - specificity----recognize self & non-self
 - memory----2nd encounter produces even more vigorous response
 - Immune system is cells and tissues that produce the immune response
 - Immunology is the study of those responses
 - Antigens
 - Molecules or bits of foreign material
 - entire microbes, parts of microbes, bacterial toxins, pollen, transplanted organs, incompatible blood cells
 - Get past the body's nonspecific defenses
 - enter the bloodstream to be deposited in spleen
 - penetrate the skin & end up in lymph nodes
 - penetrate mucous membrane & lodge in associated lymphoid tissue

- Major Histocompatibility Complex Antigens
 - All our cells have unique surface markers (1000s molecules)

- Function
 - if cell is infected with virus MHC contain bits of virus mark cell so T cells recognize a problem
 - if antigen-presenting cells (macrophages or B cells) ingest foreign proteins, they will display components part of their MHC

- Histocompatibility Testing
 - Histocompatibility is a similarity of MHC antigens on body cells of different individuals
 - tissue typing must be done before any organ transplant
 - can help identify biological parents

- Types of Mature T Cells
 - Helper T cells
 - Cytotoxic (killer) T cells
 - Memory T cells
 - Helper T Cells
 - Display a marker called CD4 on surface. Also known as T4 cells or TH cells
 - Recognize antigen fragments associated with MHC
 - Cytotoxic T Cells
 - Display CD8 on surface
 - Known as T8 or Tc or killer T cells
 - cells infected with virus
 - tumor cells
 - tissue transplants
 - Memory T Cells
 - T cells from a clone that did not turn into cytotoxic T cells during a cell-mediated response
 - Available for swift response if a 2nd exposure should occur

- Immunological Surveillance
 - Cancerous cell displays weird surface antigens (tumor antigens)
 - Surveillance = immune system finds, recognizes & destroys cells with tumor antigens
 - done by cytotoxic T cells, macrophages & natural killer cells
- most effective in finding tumors caused by viruses
- Transplant patients taking immunosuppressive drugs suffer most from viral-induced cancers

- Antibody-Mediated Immunity
 - Millions of different B cells that can recognize different antigens and respond
 - B cells sit still and let antigens be brought to them
 - stay put in lymph nodes, spleen or peyer’s patches
 - Once activated, differentiate into plasma cells that secrete antibodies
 - Antibodies circulate in lymph and blood
 - combines with epitope on antigen similarly to key fits a specific lock

- Antibody Structure
 - Glycoproteins called immunoglobulins
 - 4 polypeptide chains
 - hinged midregion lets assume T or Y shape
 - tips are variable regions -- rest is constant region
 - 5 different classes based on constant region
 - IgG, IgA, IgM, IgD and IgE
 - tips form antigen binding sites

- Immunological Memory
 - Primary immune response
 - first exposure to antigen
 - response is steady, slow
 - memory cells may remain for decades
 - Secondary immune response with 2nd exposure
 - 1000’s of memory cells proliferate & differentiate into plasma cells & cytotoxic T cells
 - antibody titer is measure of memory (amount serum antibody)
 - recognition & removal occurs so quickly not even sick

- Self-Recognition & Immunological Tolerance
 - T cells must learn to recognize self (its own MHC molecules) & lack reactivity to own proteins
 - self-recognition & immunological tolerance

- T cells mature in thymus
 - those can’t recognize self or react to it
 - only 1 in 100 emerges immunocompetent T cell

- B cells develop in bone marrow same way

- Aging
 - More susceptible to all types of infections and malignancies
 - Response to vaccines is decreased
 - Produce more autoantibodies
 - Reduced immune system function
 - T cells less responsive to antigens
 - age-related atrophy of thymus
 - decreased production of thymic hormones
 - B cells less responsive
 - production of antibodies is slowed

- Destructive immunity

- Hemolytic disease of the newborn
 - Allergic reactions
 - Anaphylactic shock
- Hay fever
- Hypersensitivities
- Autoimmune diseases
 - Systemic Lupus
 - Rheumatoid arthritis
 - Sjogrens Syndrome
 - Multiple Sclerosis