Bacteria
The First Microbes

Looking Ahead
• On completing this chapter, you should be able to:
 – Appreciate the enormous span of time for which bacteria have existed on Earth and understand their contributions to the formation of the world as we know it;
 – Summarize the various forms of known bacteria and define many of the submicroscopic structures associated with a bacterial cell;
 – Describe the process by which bacteria reproduce and grasp the significance of the frequency of bacterial replication;

Looking Ahead
• On completing this chapter, you should be able to:
 – Identify some of the environments in which bacteria thrive and recognize the different types of cultivation techniques available for growing bacteria in the laboratory;
 – Outline several important groups of bacteria in order to appreciate their diversity;
 – Identify the importance of bacteria in the disease process and briefly summarize some of the mechanisms of bacterial disease and body resistance.
Origins of Life

- Earth is 4.5 billion years old
- Life appeared as prokaryotes (bacteria) 3.5 billion years ago
- They were the only inhabitants of the planet for two billion years.
- Eukaryotes arose 1.5 billion years ago
- During time when only bacteria lived, the cyanobacteria developed
 - Photosynthesis
 - Evolution of O₂ into the atmosphere
 - Paved the way for more complex life forms
- Bacteria have evolved to fill almost every environmental niche on the planet.
 - Organisms can be found in deep ocean vents, mountaintops, deserts, and the poles.
 - A single pinch of soil can contain over a billion bacteria.
- A small percentage of these are dangerous to man. Most serve a role in the environment.

Figure 5.1: The bacteria on Earth.

General characteristics

- Much smaller than eukaryotic cells
- Very simple cells
- Lack a nucleus
 - Have a single chromosome loop of DNA
Bacterial Structure and Physiology

- **General morphology**
 - Three major forms
 - Bacillus (pl., bacilli)
 - Coccus (pl., cocci)
 - Spiral-shaped
 - Spirillum (pl., spirilla)
 - Spirochete (pl., spirochetes)
 - Other forms
 - Vibrio (some consider a spiral)
 - Square (rare)
 - Star (rare)
 - Triangle (rare)

Figure 5.2: Variations in bacterial structure

Bacterial Structure and Physiology

- **General morphology**
 - Bacillus size
 - 0.5-20 μm
 - Extraordinary example of 750 μm

Figure 5.2: Variations in bacterial structure

Bacterial Structure and Physiology

- **General morphology**
 - Coccus size and arrangement
 - Approximately 0.5 μm diameter
 - Diplococci (two)
 - Tetrads (four)
 - Sarcinae (cubical cluster)
 - Streptococci
 - Staphylococci

- The shape and arrangement are important clues to identifying which organism you are dealing with.

Figure 5.2: Variations in bacterial structure
Bacterial Structure and Physiology

• Staining procedures
 – Required because of size
 – Required because bacteria are transparent
 – Simple stain (one dye): example methylene blue
 – Gram stain (multiple dyes, a key factor in differentiating cells)
 • Gram-positive bacteria appear blue-purple
 • Gram-negative bacteria appear orange-red

Figure 5.3: Stain Reactions in Microbiology: The simple stain technique and the Gram stain technique

More on gram stains.

• A gram stain is key in identifying the type of organism.
• Some antibiotics are more effective on gram + but less so on gram –
• Some antiseptics are less effective on gram negative.
• Cell wall structure determines whether a cell is gram + or –

Bacterial Structure and Physiology

• Surface structures
 – Cell wall
 • Contains Peptidoglycan
 • Thin in Gram-negatives
 • Thick in Gram-positives
 • Site for the activity of many antibiotics
 – Plasma membrane
 • Fluid mosaic model
 • Proteins
 • Small carbohydrates
Slide 13

Bacterial Structure and Physiology

- **Surface structures**
 - Outer membrane
 - Present only in Gram-negative bacteria
 - Periplasm between plasma and outer membranes
 - Glycocalyx (allows adhesion and resists phagocytosis)
 - Not present in all bacteria
 - "Capsule," if tight
 - "Slime layer," if loose
 - Present in many pathogenic organisms because it allows adhesion, prevents drying and makes organisms resistant to some aspects of our immune system.

Slide 14

Bacterial Structure and Physiology

- **Surface structures**
 - Glycocalyx
 - Provides protection
 - Dessication
 - Chemicals
 - Environment
 - Provides adhesive properties for bacteria
 - Flagellum (pl., flagella)
 - Hair-like structure
 - Movement results in motility

Slide 15

Bacterial Structure and Physiology

- **Surface structures**
 - Pilus (pl., pili)
 - Hair-like structure
 - Hollow tube
 - Permit exchange of genetic information between bacteria
 - Can function as an attachment factor for some bacteria.
Figure 5.11: TEM of the heterotrophic bacterium Escherichia coli with pili (X40,000)

Bacterial Structure and Physiology

- Cytoplasmic structures
 - Nucleoid
 - Location of bacterial DNA
 - Single, double-stranded, circular chromosome
 - Plasmids (not necessary for cells but may confer resistance to antibiotics)
 - Small, circular DNA
 - Extrachromosomal
 - Replicate independently
 - Ribosomes (sites of protein production)
 - tRNAs
 - Soluble cytoplasmic contents

Bacterial Structure and Physiology

- Cytoplasmic structures
 - Endospores/spores
 - Typical in the genuses of Bacillus and Clostridium
 - Made by cells when the environment becomes unable to support the cell. It is a little like hibernation.
 - Contain DNA copy of genome
 - Heat resistant (requires steam and pressure to destroy)
 - Environmentally resistant
 - Can be dormant for thousands of years
 - Bacillus anthracis spores can be used as an agent of bioterrorism.
Slide 19

The formation of a bacterial spore.

Slide 20

Bacterial Structure and Physiology

• Bacterial reproduction
 – Binary fission (copy DNA and split in two)
 – *E. coli*: 20 minute doubling time in optimum environment
 – Allowed uncontrolled growth 100 *E. coli* could cover the earth's surface a foot thick in 36 hours
 – Reproduction slows when nutrients become depleted

Slide 21

Bacterial Structure and Physiology: reproduction

Figure 5.8: Binary fission in bacteria
Bacterial growth

- Culture media are used to grow organisms in labs
- Broth (any of a number of liquids containing nutrients)
- Agar (a gelatin derived from seaweed)
- Selective medium (will only allow some organisms to grow)
- Enriched medium
- Production of bioterrorist weapons

Figure 5.9: Use of an enriched medium

The Spectrum of Bacteria

- Archaea
 - Not viewed as true bacteria because of several structural and chemical differences.
 - Include extremophiles
 - An example is a Thermophilicophile
 - Lives in extremely hot conditions
 - Example: *Thermoacidophiles*
 - Grows at pH 1.0
 - Grows at 85°C
 - Example: *Pyrolobus fumarii*
 - Grows 150 feet below Pacific Ocean
 - Grows between 90°C and 113°C

Figure 5.10: The Habitat of Extremophiles: An alkaline spring in Yellowstone Park shows a mat of cyanobacteria in the foreground.

The Spectrum of Bacteria

- Other Archaea
 - Methanogens
 - Produce methane
 - Require only CO₂, N₂, and H₂O
 - Some live in swamps and make “swamp gas”
 - Extreme halophiles (like salt)
 - Grow in Great Salt Lake

- Photosynthetic bacteria
 - Cyanobacteria is the major form
 - Autotrophic microbes (produce own food)
 - Contain chlorophyll
 - Fix nitrogen (within specialized Cyanobacteria called heterocysts)
 - Symbiotic lifestyle with other cyanobacteria in colonies.
Important traditional bacteria

- Photosynthetic bacteria
 - Cyanobacteria is the major form
 - Autotrophic microbes (produce own food)
 - Contain chlorophyll
 - Fix nitrogen (within specialized Cyanobacteria called heterocysts)
 - Symbiotic lifestyle with other cyanobacteria in colonies.
 - Highly independent organisms.
 - Probably the first to produce oxygen in earth's atmosphere.

Cyanobacteria strands

The Spectrum of Bacteria

- Heterotrophic eubacteria (cannot make energy, must eat)
 - Commonly referenced simply as “bacteria”
 - Most are decomposers
 - Some producers
 - Azobacter and Rhizobium typical nitrogen-fixing bacteria
 - E. coli and Lactobacillus typical human inhabitants.
 - Digestive tract.
 - Female genital tract
 - Manufacturing of cheese, sour cream, yogurts etc.
Other heterotrophic eubacteria

- *Pseudomonas aeruginosa* typical for medical, industrial, environmental applications
- *Serratia marcescens* typical opportunistic pathogen
 - Herald of Alexander the Great's victory at Tyre
 - The red spots on bread were interpreted as a positive omen.
 - Easily observed indicator and can be used to trace wind patterns that could be used in bioweapons attacks.

The Spectrum of Bacteria

- Spiral and filamentous bacteria
 - Spirochetes and spirilla
 - Among these are the organisms that cause Syphilis, Lyme disease
 - Actinomycetes (form strands of independently functioning cells)
 - Streptomycetes are used to make many drugs.
 - Tetracycline
 - Erythromycin
 - Neomycin

The Spectrum of Bacteria

- Gliding and sheathed bacteria
 - Gliding bacteria produce a slime that they glide across.
 - Two important genera live in sulfur-rich muds. Both release sulfur back into the ecosystem.
 - *Beggiatoa*
 - *Thiothrix*
 - Myxobacteria: can survive by producing a sporelike body
 - Sheathed bacteria
 - Cell wall are enclosed in a sheath that protects the organism from predators; among this is the genus *Spherotilus*
The Spectrum of Bacteria

• Predatory and other bacteria
 – *Bdellovibrio*: prey on other bacteria.
 – *Bacteroides*: G- digest cellulose
• Chemolithotrophic bacteria
 – *Nitrosomonas*
 – *Nitrobacter*
• Acid-fast bacteria
 – *Mycobacteria*:
 – *M. tuberculosis*
 – *M. leprae*

The Spectrum of Bacteria

• Submicroscopic bacteria (cannot be viewed well with a light microscope)
 – *Rickettsia*: rocky mountain spotted fever
 – *Chlamydia*: one species causes STD
 – *Mycoplasma*: only bacteria without a cell wall.

Figure 5.12: Chlamydia. Dark inclusion bodies typical of a Chlamydia infection
[Courtesy of Dr. E. Arum/Dr. N. Jacobs/CDC]
Slide 34

• Bacterial pathogens
 – First observed during Golden Age of Microbiology
 – Source of disease
 • By growth
 • By production of toxins
 • By induction of overactive immune response

Slide 35

Sum up:
• Read your text for clarification of topics.
• Learn the key terminology listed at the end of your chapter.