The Respiratory System

- Ventilation and respiration

Respiratory Membrane (Air-Blood Barrier)

- Thin squamous epithelial layer lines alveolar walls
- Alveolar pores connect neighboring air sacs
- Pulmonary capillaries cover external surfaces of alveoli
- On one side of the membrane is air and on the other side is blood flowing past

Respiratory Membrane (Air-Blood Barrier)

- Gas crosses the respiratory membrane by diffusion
- Oxygen enters the blood
- Carbon dioxide enters the alveoli
- Alveolar macrophages ("dust cells") add protection by picking up bacteria, carbon particles, and other debris
- Surfactant (a lipid molecule) coats gas-exposed alveolar surfaces
Four Events of Respiration

- Pulmonary ventilation—moving air in and out of the lungs (commonly called breathing)
- External respiration—gas exchange between pulmonary blood and alveoli
 - Oxygen is loaded into the blood
 - Carbon dioxide is unloaded from the blood

External Respiration

- Respiratory gas transport—transport of oxygen and carbon dioxide via the bloodstream
- Internal respiration—gas exchange between blood and tissue cells in systemic capillaries

Mechanics of Breathing (Pulmonary Ventilation)

- Completely mechanical process that depends on volume changes in the thoracic cavity
- Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure
 - Two phases
 - Inspiration = inhalation
 - Flow of air into lungs
 - Expiration = exhalation
 - Air leaving lungs

Inspiration

- Diaphragm and external intercostal muscles contract
- The size of the thoracic cavity increases
- External air is pulled into the lungs due to
 - Increase in intrapulmonary volume
 - Decrease in gas pressure
Expiration

- Largely a passive process which depends on natural lung elasticity
- As muscles relax, air is pushed out of the lungs due to
 - Decrease in intrapulmonary volume
 - Increase in gas pressure
- Forced expiration can occur mostly by contracting internal intercostal muscles to depress the rib cage

Expiration

- Normal pressure within the pleural space is always negative (intrapleural pressure)
- Differences in lung and pleural space pressures keep lungs from collapsing
Nonrespiratory Air (Gas) Movements

- Can be caused by reflexes or voluntary actions
- **Examples:**
 - Cough and sneeze—clears lungs of debris
 - Crying—emotionally induced mechanism
 - Laughing—similar to crying
 - Hiccup—sudden inspirations
 - Yawn—very deep inspiration

Table 13.1

<table>
<thead>
<tr>
<th>Movement</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>Opens chest, clearing lungs of debris</td>
</tr>
<tr>
<td>Sneezing</td>
<td>Similar to cough, clears mucus from nose and throat</td>
</tr>
<tr>
<td>Crying</td>
<td>Emotionally induced mechanism</td>
</tr>
<tr>
<td>Laughing</td>
<td>Similar to crying</td>
</tr>
<tr>
<td>Hiccup</td>
<td>Sudden inspirations</td>
</tr>
<tr>
<td>Yawning</td>
<td>Very deep inspiration</td>
</tr>
</tbody>
</table>

Respiratory Volumes and Capacities

- Normal breathing moves about 500 mL of air with each breath
 - This respiratory volume is tidal volume (TV)
- Many factors that affect respiratory capacity
 - A person’s size
 - Sex
 - Age
 - Physical condition

- Inspiratory reserve volume (IRV)
 - Amount of air that can be taken in forcibly over the tidal volume
 - Usually between 2100 and 3200 mL
- Expiratory reserve volume (ERV)
 - Amount of air that can be forcibly exhaled
 - Approximately 1200 mL

- Residual volume
 - Air remaining in lung after expiration
 - About 1200 mL
Respiratory Volumes and Capacities

- Vital capacity
 - The total amount of exchangeable air
 - Vital capacity = TV + IRV + ERV
- Dead space volume
 - Air that remains in conducting zone and never reaches alveoli
 - About 150 mL

- Functional volume
 - Air that actually reaches the respiratory zone
 - Usually about 350 mL
 - Respiratory capacities are measured with a spirometer