The Skeletal System

- Growth and repair

Formation of the Human Skeleton

- In embryos, the skeleton is primarily hyaline cartilage
- During development, much of this cartilage is replaced by bone
- Cartilage remains in isolated areas
 - Bridge of the nose
 - Parts of ribs
 - Joints

Bone Growth (Ossification)

- Epiphyseal plates allow for lengthwise growth of long bones during childhood
 - New cartilage is continuously formed
 - Older cartilage becomes ossified
 - Cartilage is broken down
 - Enclosed cartilage is digested away, opening up a medullary cavity
 - Bone replaces cartilage through the action of osteoblasts

Bone Growth (Ossification)

- Bones are remodeled and lengthened until growth stops
 - Bones are remodeled in response to two factors
 - Blood calcium levels
 - Pull of gravity and muscles on the skeleton
 - An increase in muscle mass will increase bone mass
 - Bones grow in width (called appositional growth)
 - This will continue after bones stop growing in length in response to muscle pull, hormones, and other factors.

Long Bone Formation and Growth
Slide 6

Long Bone Formation and Growth

- Growth: Bone grows in length because of cartilage growth.
- Remodeling: Growing shaft is remodeled by bone growth and absorption.

Slide 7

Types of Bone Cells

- Osteocytes: Mature bone cells
- Osteoblasts: Bone-forming cells
- Osteoclasts: Bone-destroying cells
 - Break down bone matrix for remodelling and release of calcium in response to parathyroid hormone.
 - Bone remodeling is performed by both osteoblasts and osteoclasts.

Slide 8

Bone Fractures

- Fracture: Break in a bone
- Types of bone fractures
 - Closed (simple) fracture: Break that does not penetrate the skin
 - Open (compound) fracture: Broken bone penetrates through the skin
- Bone fractures are treated by reduction and immobilization.

Slide 9

Common Types of Fractures

- Chart showing various types of fractures such as compression, depressed, impacted, greenstick, etc.

Slide 10

Repair of Bone Fractures

- Hematoma (blood-filled swelling) is formed
- Break is splinted by fibrocartilage to form a callus
- Fibrocartilage callus is replaced by a bony callus
- Bony callus is remodeled to form a permanent patch.
Stages in the Healing of a Bone Fracture

- Hematoma
- External callus
- Bony callus of spongy bone
- Healed fracture
- New blood vessels
- Internal callus (fibrous tissue and cartilage)
- Spongy bone trabecula

Developmental Aspects of the Skeletal System

- At birth, the skull bones are incomplete
- Bones are joined by fibrous membranes called fontanels
- Fontanels are completely replaced with bone within two years after birth

Skeletal Changes Throughout Life

- Fetus
 - Long bones are formed of hyaline cartilage
 - Flat bones begin as fibrous membranes
 - Flat and long bone models are converted to bone
- Birth
 - Long bones still have a large % of cartilage
 - Allows easier childbirth
 - Child is not mobile until some bones ossify
 - Fontanels normally remain until around age 2 but can exist much longer
- Adolescence
 - Epiphyseal plates become ossified and long bone growth ends
- Size of cranium in relationship to body
 - 2 years old—skull is larger in proportion to the body compared to that of an adult
 - 8 or 9 years old—skull is near adult size and proportion
 - Between ages 6 and 11, the face grows out from the skull

Skeletal Changes Throughout Life

(a) Human newborn Human adult
Slide 17

Skeletal Changes Throughout Life

- Curvatures of the spine
 - Primary curvatures are present at birth and are convex posteriorly
 - Secondary curvatures are associated with a child's later development and are convex anteriorly
 - Abnormal spinal curvatures (scoliosis and lordosis) are often congenital

Slide 18

Primary curve at birth

Slide 19

Normal adult curvatures

- Cervical (neck)
- Thoracic (ribs are attached)
- Lumbar (between ribcage and pelvis)
- Part of pelvis

Slide 20

Disorders of curvature.
Scoliosis
• Lateral curve

Lordosis
• Exaggerated lumbar curve

Kyphosis
• Exaggerated thoracic curvature