Slide 1

The Endocrine System

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Slide 2

The Endocrine System

- Second-messenger system of the body
- Uses chemical messengers (hormones) that are released into the blood
- Hormones control several major processes
 - Reproduction
 - Growth and development
 - Mobilization of body defenses
 - Maintenance of much of homeostasis
 - Regulation of metabolism

Slide 3

Hormone Overview

- Hormones are produced by specialized cells
- Cells secrete hormones into extracellular fluids
- Blood transfers hormones to target sites
- These hormones regulate the activity of other cells

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings
Slide 4

The Chemistry of Hormones
- Hormones are classified chemically as:
 - Amino acid-based, which includes: Proteins, Peptides, Amines
 - Steroids—made from cholesterol
 - Prostaglandins—made from highly active lipids

Slide 5

Mechanisms of Hormone Action
- Hormones affect only certain tissues or organs (target cells or target organs)
- Target cells must have specific protein receptors
- Hormone-binding alters cellular activity

Slide 6

Effects Caused by Hormones
- Changes in plasma membrane permeability or electrical state
- Synthesis of proteins, such as enzymes
- Activation or inactivation of enzymes
- Stimulation of mitosis
- Promotion of secretory activity
The Chemistry of Hormones

- Two mechanisms in which hormones act
 - Direct gene activation
 - Second-messenger system

Direct Gene Activation
(Steroid Hormone Action)

- Diffuse through the plasma membrane of target cells
- Enter the nucleus
- Bind to a specific protein within the nucleus
- Bind to specific sites on the cell’s DNA
- Activate genes that result in synthesis of new proteins

Steroid Hormone

Figure 9.1a

Steroid hormone
Receptor protein
Hormone-receptor complex
DNA
mRNA
New protein
Plasma membrane of target cell

Figure 9.1a
Second-Messenger System (Nonsteroid Hormone Action)

- Hormone binds to a membrane receptor
- Hormone does not enter the cell
- Sets off a series of reactions that activates an enzyme
- Catalyzes a reaction that produces a second-messenger molecule
- Oversees additional intracellular changes to promote a specific response

Figure 9.1b

Nonsteroid hormone (first messenger)

Enzyme

Second messenger

Cytoplasm

Effect on cellular function, such as glycogen breakdown

Plasma membrane of target cell

ATP

cAMP

Figure 9.1b, step 1

Nonsteroid hormone (first messenger)

Receptor protein

Plasma membrane of target cell

Cytoplasm

Effect on cellular function, such as glycogen breakdown

Figure 9.1b, step 2

Cytoplasm
Nonsteroid hormone (first messenger)
Enzyme
Receptor protein
Plasma membrane of target cell

Figure 9.1b, step 3

Cytoplasm
Nonsteroid hormone (first messenger)
Enzyme
Receptor protein
Second messenger
ATP
cAMP

Figure 9.1b, step 4

Cytoplasm
Nonsteroid hormone (first messenger)
Enzyme
Receptor protein
Second messenger
ATP
cAMP
Effect on cellular function, such as glycogen breakdown.
Table 9.1 (1 of 4)

<table>
<thead>
<tr>
<th>Major Endocrine Glands and Hormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gland</td>
</tr>
<tr>
<td>Adrenal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thyroid gland</td>
</tr>
</tbody>
</table>

Table 9.1 (2 of 4)

<table>
<thead>
<tr>
<th>Major Endocrine Glands and Hormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gland</td>
</tr>
<tr>
<td>Pituitary</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 9.1 (3 of 4)

<table>
<thead>
<tr>
<th>Major Endocrine Glands and Hormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gland</td>
</tr>
<tr>
<td>Pineal gland</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Control of Hormone Release
- Hormone levels in the blood are mostly maintained by negative feedback
- A stimulus or low hormone levels in the blood triggers the release of more hormone
- Hormone release stops once an appropriate level in the blood is reached

Hormonal Stimuli of Endocrine Glands
- Most common stimuli
- Endocrine glands are activated by other hormones
- Examples:
 - Anterior pituitary hormones
Humoral Stimuli of Endocrine Glands

- Changing blood levels of certain ions stimulate hormone release
- Humoral indicates various body fluids such as blood and bile
- Examples:
 - Parathyroid hormone
 - Calcitonin
 - Insulin
Neural Stimuli of Endocrine Glands

- Nerve impulses stimulate hormone release
- Most are under the control of the sympathetic nervous system
- Examples include the release of norepinephrine and epinephrine by the adrenal medulla

Figure 9.2c

Major Endocrine Organs

- Pituitary gland
- Thyroid gland
- Parathyroid glands
- Adrenal glands
- Pinea gland
- Thymus gland
- Pancreas
- Gonads (Ovaries and Testes)
- Hypothalamus
Location of Major Endocrine Organs

Figure 9.3

Pituitary Gland

- Size of a pea
- Hangs by a stalk from the hypothalamus in the brain
- Protected by the sphenoid bone
- Has two functional lobes
 - Anterior pituitary—glandular tissue
 - Posterior pituitary—nervous tissue
- Often called the “master endocrine gland”

Hormones of the Anterior Pituitary

- Six anterior pituitary hormones
 - Two affect non-endocrine targets
 - Growth hormone
 - Prolactin
 - Four stimulate other endocrine glands (tropic hormones)
 - Thyroid-stimulating hormone (thyrotropic hormone)
 - Adrenocorticotropic hormone
 - Two gonadotropic hormones
Hormones of the Anterior Pituitary

- Characteristics of all anterior pituitary hormones
 - Proteins (or peptides)
 - Act through second-messenger systems
 - Regulated by hormonal stimuli, mostly negative feedback

Hormones of the Anterior Pituitary

- Growth hormone
 - General metabolic hormone
 - Major effects are directed to growth of skeletal muscles and long bones
 - Plays a role in determining final body size
 - Causes amino acids to be built into proteins
 - Causes fats to be broken down for a source of energy
Hormones of the Anterior Pituitary

- Growth hormone (GH) disorders
 - Pituitary dwarfism results from hyposecretion of GH during childhood
 - Gigantism results from hypersecretion of GH during childhood
 - Acromegaly results from hypersecretion of GH during adulthood

Slide 41

Hormones of the Anterior Pituitary

Gigantism

Figure 9.5a

Slide 42

Hormones of the Anterior Pituitary

Dwarfism

Figure 9.5b
Hormones of the Anterior Pituitary

- **Prolactin (PRL)**
 - Stimulates and maintains milk production following childbirth
 - Function in males is unknown
- **Adrenocorticotropic hormone (ACTH)**
 - Regulates endocrine activity of the adrenal cortex
- **Thyroid-stimulating hormone (TSH)**
 - Influences growth and activity of the thyroid gland

Hormones of the Anterior Pituitary

- **Gonadotropic hormones**
 - Regulate hormonal activity of the gonads
 - **Follicle-stimulating hormone (FSH)**
 - Stimulates follicle development in ovaries
 - Stimulates sperm development in testes
 - **Luteinizing hormone (LH)**
 - Triggers ovulation of an egg in females
 - Stimulates testosterone production in males

Pituitary–Hypothalamus Relationship

- Hormonal release is regulated by releasing and inhibiting hormones produced by the hypothalamus
- Hypothalamus produces two hormones
 - These hormones are transported to neurosecretory cells of the posterior pituitary
 - Oxytocin
 - Antidiuretic hormone
- The posterior pituitary is not strictly an endocrine gland, but does release hormones
Hormones of the Posterior Pituitary

- Oxytocin
 - Stimulates contractions of the uterus during labor, sexual relations, and breastfeeding
 - Causes milk ejection in a nursing woman

Hormones of the Posterior Pituitary

- Antidiuretic hormone (ADH)
 - Inhibits urine production by promoting water reabsorption by the kidneys
 - In large amounts, causes vasoconstriction leading to increased blood pressure
 - Also known as vasopressin

Figure 9.6